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Abstract
Spontaneous parametric down-conversion (SPDC) is the most widely used process for
generating photon pairs entangled in various degrees of freedom such as polarization,
time-energy, position-transverse momentum, and angle-orbital angular momentum (OAM). In
SPDC, a pump photon interacts with a non-linear optical crystal and splits into two entangled
photons called the signal and the idler photons. The SPDC process has been studied extensively
in the last few decades for various pump and crystal configurations, and the entangled photon
pairs produced by SPDC have been used in numerous experimental studies on quantum
entanglement and entanglement-based real-world quantum-information applications. In this
tutorial article, we present a thorough study of phase matching in BBO crystals for spontaneous
parametric down-conversion and thereby also investigate the generation of entangled photons in
such crystals. First, we present a theoretical derivation of two-photon wavefunction produced by
SPDC in the frequency and transverse momentum bases. We then discuss in detail the effects
due to various crystal and pump parameters including the length of the crystal, the angle
between the optic axis and the pump propagation direction, the pump incidence angle on the
crystal surface, the refraction at the crystal surfaces, and the pump propagation direction inside
the crystal. These effects are extremely relevant in experimental situations. We then present our
numerical and experimental results in order to illustrate how various experimental parameters
affect the phase matching and thus the generation of entangled photons. Finally, using the
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two-photon wavefunction in the transverse wave-vector basis, we show how to derive the
two-photon wavefunction in the OAM basis and thereby calculate the two-photon angular
Schmidt spectrum. We expect this article to be useful for researchers working in various
capacities with entangled photons generated by SPDC in BBO crystals.

Keywords: parametric down-conversion, phase matching, entanglement, orbital angular
momentum
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1. Introduction

1.1. Background

Spontaneous parametric down-conversion (SPDC) is a
second-order non-linear optical process in which a photon
of a higher frequency passes through an optical material and
splits into two photons of lower frequencies [1]. The photon at
the higher frequency is referred to as the pump photon and the
two photons at lower frequencies are referred to as the signal
and the idler photons. SPDC is called parametric since the
total energy remains conserved in the process. The constraints
of energy and momentum conservations in SPDC require that
the sum of the energies of the signal and idler photons be
equal to the energy of the pump photon and that the sum
of the momenta of the signal and idler photons be equal to
the momentum of the pump photon. The SPDC process was
first predicted theoretically by Louisell et al in 1961 [2], who
modelled it as two oscillators coupled via a time-dependent
reactance. Later, this effect was studied by many others before
its first experimental observation as parametric fluorescence in
a LiNbO3 crystal [3]. In this experiment, an intense argon-ion
laser beam was used as a pump and the parametric fluores-
cence was observed over a significant portion of the visible
and near-infrared spectrum through temperature tuning of the
crystal. A similar effect was observed in an experiment with
ammonium dihydrogen phosphate (ADP) crystal. In this case
the spectral tuning was achieved by rotating the ADP crystal
around the pump-beam direction [4]. Later, instead of treat-
ing SPDC as a coupled oscillator problem, Giallorenzi et al
[5] studied it as a scattering problem in which a pump photon
transforms into a pair of photons due to non-linear polarizabil-
ity. In their study, Giallorenzi et al [5] were able to incorporate
the effects due to factors such as the anisotropy and disper-
sion of the non-linear crystal, input beam of finite spectral
width, etc. Around the same time, Klyshko and co-authors
studied SPDC as part of their investigations of spontaneous
scattering due to quadratic and cubic terms in the expansion
of the polarizability [6, 7]. They obtained formulas for the
intensity of scattered light and its dependence on the fre-
quency and observation direction. Following up on the work
by Klyshko and co-authors, Burnham et al [8] experiment-
ally studied coincidences between the down-converted signal
and idler photons and thereby demonstrated for the first time
that in the SPDC process the two photons are emitted simul-
taneously. This pioneering coincidence-detection experiment
essentially marks the beginning of using SPDC photons for

studying foundations of quantummechanics and for exploring
quantum information-based applications.

In non-linear optical processes, the constraints due to the
conservation laws are referred to as the phase-matching con-
ditions. In the SPDC process, the phase matching is affected
by various crystal as well as pump parameters and decides the
efficiency with which a pump photon gets down-converted and
the emission directions into which the signal and idler photons
get generated. The SPDC phase-matching has been extens-
ively studied in the past. It was shown by Franken et al [9] that
in order to observe the second-order non-linear effect of spon-
taneous parametric down-conversion, one not only requires
a highly intense pump field but also a non-centrosymmetric
crystal. In the context of second-harmonic generation in
KDP crystals, Giordmaine [10] and Maker [11] independently
showed that the birefringence and dispersive properties of the
crystal can be utilized for achieving the required phase match-
ing conditions. Midwinter et al [12] extended this technique to
three-wave interaction processes, such as SPDC, for achieving
the conditions for phase matching. Using the Kleinman’s sym-
metry conjecture, Midwinter et al [12] showed that the differ-
ent types of phase-matching are satisfied by different crystals
with appropriate symmetry properties [13]. The phase match-
ing conditions in SPDC also decide the polarizations that the
pump, the signal and the idler photons can have. For a negative
uniaxial birefringent crystal, such as β-barium borate (BBO)
[12, 14–17], in which the refractive index of light propagat-
ing along the optic axis of the crystal is less than the refract-
ive index of light propagating perpendicular to it, there are a
total of eight possible combinations of polarization states that
the pump, signal and idler photons can take. However, due
to phase matching constraints, only a few combinations are
allowed. In general, when both the signal and idler photons
have the same polarization, the phase-matching is referred to
as type-I phase matching. On the other hand, when the signal
and idler photons have orthogonal polarizations, it is referred
to as type-II phase matching. Furthermore, if the directions of
propagation of the down-converted signal and idler photons
are along the propagation direction of the pump photon then it
is known as collinear phase-matching. Alternatively, in non-
collinear phase matching, the signal and idler photons propag-
ate in directions non-collinear with that of the pump photon.

The two SPDC photons have been shown to be entangled
in various degrees of freedom such as energy-time [18–21],
position-momentum [22–24], polarization [25–27], and angle-
angular momentum [28–30]. In the last few decades, entan-
glement of the SPDC photons has been used for probing the
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foundations of quantum mechanics. One major step in this
direction has been the ruling out of any local hidden vari-
able interpretations of quantum mechanics [31, 32] through
the experimental violations of Bell’s inequality [33, 34]. Such
violations have been observed in various degrees of freedom
including polarization [35, 36], position and momentum [28],
time and energy [18, 37, 38], spatial-parity [39], and OAM
[40]. Using hyperentangled states of the SPDC photons, even
simultaneous violations of Bell’s inequalities in more than one
degree of freedom have been reported [19, 41–43]. In addi-
tion to being used for probing the foundations of quantum
mechanics, SPDC photons have also been used for explor-
ing the entanglement-based real-world applications such as
quantum information [44–48], quantum cryptography [49–
51], quantum dense coding [44, 52], optical measurements
[53, 54], imaging [55–57], spectroscopy [58], quantum litho-
graphy and metrology [59–61].

SPDC has been experimentally realized using a vari-
ety of bulk crystals such as lithium niobate (LiNbO3)
[3, 62], BBO [63–65], potassium dihydrogen phosphate
(KDP) [66], ammonium dihydrogen phosphate (ADP) [4,
67], and Ba2NaNb5O15 [68, 69] crystals. The bulk crystals
such as BBO do not have very high down-conversion effi-
ciency. Therefore, in more recent years, periodically-poled,
quasi-phase matched waveguide crystals are being used to
achieve higher SPDC efficiency, although in a restricted
phase-matching range. Several experiments have reported
SPDC generation using periodically-poled potassium titanyl
phosphate (PPKTP) waveguide crystals [70–72]. The other
quasi-phase matched waveguide crystals that are being used
for SPDC generation include the periodically-poled lithium
niobate (PPLN) crystals [73, 74], and the periodically-poled
lithium tantalate (PPLT) crystals [75].

In the past, although most of the foundational experiments
[18–30, 35–43] as well as experiments exploring applications
of photonic entanglement [44–61] have used BBO crystals
for producing entangled photons by SPDC, the more recent
experimental studies that require high down-conversion effi-
ciencies in limited emission directions have started using the
quasi-phase matched periodically-poled crystals for the pur-
pose. Nevertheless, the current experimental studies, either
foundational or application-oriented, that do not necessarily
require very high down-conversion efficiencies still employ
BBO crystals. This is due to the fact that the quasi-phase
matching process that enables the periodically poled crystals
to have high-down-conversion efficiencies compared to the
bulk crystals does so at the expense of limiting the phase-
matching ranges. As a consequence, although the periodic-
ally poled crystals become highly efficient for collinear down-
conversion, the quasi-phase matching in such crystals does
not allow for non-collinear down-conversion. Therefore, while
these crystals can be used for studying temporal and polariz-
ation correlations of entangled photons, they are not effect-
ive in studying the spatial correlations of entangled photons
in non-collinear emission geometries. Furthermore, the phase
matching in the periodically-poled crystals is achieved by
changing the temperature of the crystals, and therefore these
crystals require temperature tuning and stability for achieving

the desired phase matching condition. On the other hand, in
BBO crystals, broad phase matching ranges can be very easily
achieved. Both the collinear and non-collinear phase matching
requirements can be satisfied simply by changing the angle
between the optic axis of the crystal and the pump propaga-
tion direction. Moreover, these crystals have broad transmis-
sion ranges, have high damage threshold, and are readily avail-
able with various thicknesses. Therefore, a substantial number
of experiments, especially those investigating spatial correla-
tions of entangled photons, still employ BBO crystals for gen-
erating entangled photons via SPDC.

Because of the wide use of BBO crystals in generating
SPDC photons with a variety of phase-matching geometries,
several works in the past have investigated different aspects
of SPDC phase matching in BBO crystals [25, 76–84]. How-
ever, a comprehensive study of SPDC phase-matching in BBO
crystals covering all the major aspects of phase matching
worked out in one place is still lacking. Such a study would
be very useful to researchers working in various capacities
with entangled photons produced by SPDC in BBO crys-
tals. In this tutorial article, we present a thorough study of
the generation of entangled two-photon fields by the SPDC
process in BBO crystal. We discuss the SPDC phase match-
ing in various details and study how it is affected by vari-
ous crystal and pump parameters. Through our simulation and
experimental results, we also highlight several facts that would
be very useful during experimental investigations with SPDC
photons. Most of the calculations presented in this article have
been carried out with the wavefunction of the down-converted
photons expressed in the position or momentum bases. How-
ever, in the last section of this article, we discuss the two-
photon wavefunction in the orbital angular momentum (OAM)
basis and show how to calculate the OAM spectrum of the
entangled two-photon field.

1.2. Outline of the paper

This article is organized as follows. In section 2, we dis-
cuss the spontaneous parametric down-conversion process in
BBO crystal. First, we derive the SPDC Hamiltonian and
thereby work out the two-photon state produced by SPDC.
We study how different pump and crystal parameters affect
the phase matching and thus the generation of the signal and
idler photons in SPDC. Our study includes effects due to sev-
eral experimental factors such as crystal length, angle between
optic axis and beam propagation direction, pump incidence
angle on the crystal surface, refraction at the crystal surface,
pump propagation inside the crystal, and the location of the
beam waist of a Gaussian pump field. All these effects are
extremely relevant in experimental situations. In section 3, we
discuss different polarization effects in SPDC. We investig-
ate how phase matching conditions decide the possible com-
binations of polarizations that the signal, idler and the pump
photons can have, and how the polarization of these photons
affect their propagation inside the non-linear medium. In sec-
tion 4, we calculate the detection probabilities of the down-
converted photons for both type-I and type-II phase matching
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conditions. Furthermore, we calculate the conditional detec-
tion probability in the position basis. We then present vari-
ous experimental and numerical results in section 5 in order
to highlight how various experimental parameters affect the
phase matching and thus the generation of entangled photons.
In this context, we specifically point out that the intensity
of the down-converted photons remains maximum for the
collinear phase-matching and decreases from the maximum
value with increasing non-collinearity. Nevertheless, the total
power of the generated photons stays independent of the non-
collinearity of phase matching. In section 6, we derive the two-
photon wavefunction in the OAM basis and present the theor-
etical results that are useful for studying entanglement in the
OAM basis. Finally, we present the conclusions in section 7.

We would like to point out that the general formalism of
section 2 involving the derivation of the interaction Hamilto-
nian for SPDC and thereby the two-photon wavefunction
is applicable to SPDC process not only in BBO crystals
but also in any medium that has second-order non-linearity.
Furthermore, the general formalism presented in section 4
for calculating the coincidence count rate, individual photon
count rates, and the conditional detection probabilities is also
applicable to SPDC process in any non-linear medium and
not just in BBO crystals. So, while the present tutorial art-
icle presents a complete study of phase-matching and SPDC-
photon generation in BBO crystals, the general formalism
presented in this article can be used for studying the SPDC
phase-matching and thereby the entangled photons generation
in any other non-linear medium. Therefore, we expect this
tutorial article to be useful in general to researchers working in
various capacities with entangled photons produced via SPDC.

2. Spontaneous parametric down-conversion

2.1. Electromagnetic field inside a non-linear medium

Interaction of classical electromagnetic waves with a mater-
ial medium is described by the Maxwell’s equations. These
equations are first-order coupled differential equations. The
solutions to these equations provide information about the
behavior of electric and magnetic fields inside a medium. The
Maxwell’s equations in a medium devoid of free charges and
currents are given as

∇ ·D(r, t) = 0, (1)

∇ ·B(r, t) = 0, (2)

∇×E(r, t) =−∂B(r, t)
∂t

, (3)

∇×H(r, t) =
∂D(r, t)
∂t

, (4)

where E(r, t) stands for the electric field, B(r, t) stands for the
magnetic flux density,H(r, t) = 1

µB(r, t) is termed as magnetic
field, where µ is the magnetic permeability. One can write
µ= µrµ0, where µr is the relative permeability of the medium
and µ0 is called the magnetic permeability of free spaceD(r, t)
stands for the electric displacement vector. Here, the medium
is assumed to be magnetically isotropic, with the value of µr
equal to one, but electrically anisotropic. The electric displace-
ment vector D(r, t) inside the medium is given by [85, 86]

D(r, t) = ϵ0E(r, t)+P(r, t), (5)

where P(r, t) is termed as polarization. When the pump
field strength is weak, the polarization is given by P(r, t) =
ϵ0χ

(1)E(r, t), where χ(1) is the linear susceptibility. However,
when the pump field strength is strong, the polarization has
higher-order contributions given by

P(r, t) = ϵ0χ
(1)E(r, t)+ ϵ0χ

(2)E(r, t)E(r, t)

+ ϵ0χ
(3)E(r, t)E(r, t)E(r, t)+ · · · ,

= P(1)(r, t)+P(2)(r, t)+P(3)(r, t)+ · · · , (6)

where χ(2) is called the second-order non-linear susceptibil-
ity, χ(3) is called the third-order non-linear susceptibility, etc.
P(1)(r, t) is called the linear polarization while P(2)(r, t) is
called the second-order non-linear polarization, etc. Typically,
χ(2) and χ(3) are several orders of magnitude smaller than χ(1)

and as a result we see non-linear effects only at very high field
strengths. Using equation (3)–(6), we write the wave equation
inside a non-linear medium as

∇(∇ ·E(r, t))−∇2E(r, t) =

−µ0
∂2

∂t2

[
ϵ0

(
1+χ(1)

)
E(r, t)+P(2)(r, t)+ · · ·

]
. (7)

Here 1+χ(1) = n2 with n being the refractive index of the
medium. The susceptibilities above are tensor quantities, and
for the second-order non-linear effects we explicitly write the
second-order non-linear polarization as

(P(2))l = ϵ0χ
(2)
lmn(E)m(E)n. (8)

Here, l, m, and n are cartesian indices and χ(2)
lmn is the second-

order susceptibility tensor [85, 87]. In this article, we mostly
discuss the second-order non-linear optical effect of spontan-
eous parametric down-conversion.

2.2. Introduction to SPDC

There are a variety of second-order non-linear effects that take
place inside a non-linear medium, such as second-harmonic
generation, sum-frequency generation, and difference-
frequency generation. However, the second-order non-linear
effect that we concentrate on in this article is the spontaneous
parametric down-conversion (SPDC). In SPDC, a single input
photon at higher frequency, called the pump photon, interacts
with a non-linear crystal and splits into two photons of lower
frequencies, called the signal and idler photons [8, 88]. The
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Figure 1. (a) Difference frequency generation process. (b)
Spontaneous parametric down conversion process. (c) Energy-level
diagram of SPDC.

SPDC is a type of difference-frequency generation process
and is depicted in figure 1(a). We note that in the process
of difference-frequency generation, if the field at frequency
ω2 is present in the input field, it stimulates the difference
frequency generation at ω3 = ω1 −ω2, and as a result the
process is usually very efficient and is called optical paramet-
ric amplification/oscillation. Even, when the frequency ω2 is
not present in the input field, one can still have the gener-
ation of difference frequency at ω3 = ω1 −ω2 accompanied
by the generation of frequency ω2. However, in this case the
generation of the difference frequency is stimulated by the
presence of the vacuum mode at frequency ω2 in the input
field and is therefore very inefficient. This second-order pro-
cess of generating the frequencies ω3 and ω2 from the input
frequency of ω1 is referred to as the spontaneous paramet-
ric down-conversion (see figure1 (b)). The term spontaneous
refers to the fact that the process is stimulated by the vacuum
mode at frequency ω2 in the input field and the term paramet-
ric signifies that the total energy remains conserved during
the process. Figure 1(c) represents the energy-level diagram
of the SPDC process, in which the photon at frequency ω1

gets absorbed and the absorber goes to a virtual state. From
there, it decays down to the ground state emitting photons
at frequencies ω2 and ω3 = ω1 −ω2. The constraints due to
energy and momentum conservation make the two down-
converted photons entangled in various degrees of freedom
including energy-time [19, 20], position-momentum [22, 24],
polarization [26, 27], and angular position-orbital angular
momentum [28, 29]. These entangled photons generated by
SPDC have now become very important not only for studying
the foundations of quantum mechanics but also for real-world
applications of quantum entanglement.

2.3. Hamiltonian for SPDC

In order to study SPDC in all the details, we first need to derive
the Hamiltonian for the process. For this, we start with the total
(electrical plus magnetic) energy density of the electromag-
netic field, which is given by

D(r, t) ·E(r, t) =
[
ϵ0E(r, t)+ ϵ0χ

(1)E(r, t)
]
·E(r, t)

+
[
ϵ0χ

(2)E(r, t)E(r, t)
]
·E(r, t)+ · · · (9)

The first term is the contribution to the electromagnetic energy
due to the linear term. The second term is the contribution due

to the second-order non-linear term, etc. Since we are inter-
ested in second-order non-linear optical effects, we will look
at the second-order contribution to the energy, which is given
by

HI(t) =
ˆ
V
D(r, t) ·E(r, t)d3r,

= ϵ0

ˆ
V
χ(2)E(r, t)E(r, t) ·E(r, t)d3r,

=

ˆ
V
P(2)(r, t) ·E(r, t)d3r, (10)

where the integration extends over the volume V of the non-
linear medium. This is the general expression for the con-
tribution to the total energy due to second-order non-linear
optical effects. However, we are interested only in the non-
linear optical process of parametric down-conversion. So,
using equation (8), we write HI(t) as [89, 90]

HI(t) = ϵ0

ˆ
V
χ
(2)
lmn

× (Ep(r, t))l(Es(r, t))m(Ei(r, t))nd3r, (11)

where p, s, and i stand for pump, signal, and idler, respectively.
In writing the above expression, we have used the vectorial
form of the electric fields. This is because of the fact that the
down-conversion process does depend on the polarizations of
the pump, signal and idler fields. However, working with vec-
torial fields makes the calculations quite cumbersome. There-
fore, our approach in this article is to first find out the allowed
combinations of polarization states that the signal, idler and
pump photons can have and then for each combination, work
with the scalar fields as far as calculating the detection prob-
abilities of the down-converted photons are concerned. To this
end, we write HI(t) as

HI(t) = ϵ0

ˆ
V
χ(2)Ep(r, t)Es(r, t)Ei(r, t)d3r, (12)

where χ(2) stands for the second-order nonlinearlity, and
Ep(r, t), Es(r, t), and Ei(r, t) are the scalar electric fields for an
allowed combination of polarizations of the signal, idler and
pump photons.

In quantum formalism, the contribution HI(t) to the energy
takes the form of the interaction Hamiltonian operator ĤI(t)
and can be written as

ĤI(t) = ϵ0

ˆ
V
χ(2)Êp(r, t)Ês(r, t)Êi(r, t)d3r. (13)

Here, Êp(r, t), Ês(r, t), and Êi(r, t) are the electric field operat-
ors corresponding to the pump, signal and idler fields, respect-
ively. Next, we write the fields in terms of their negative and
positive frequency parts. This procedure is equivalent to the
complex analytic signal representation for classical fields [91].
Although the complex analytic signal representationwas intro-
duced as an outstanding tool for simplifying the mathematical
handling of classical fields, its counterpart in the context of
quantum field has become a necessary ingredient for handling
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creation and annihilation of photons. Following [92], we write
a quasi-monochromatic quantum electric field operator Ê(t) as

Ê(t) =
ˆ ∞

−∞

ˆ̃E(ω)e−iωtdω,

=

ˆ 0

−∞

ˆ̃E(ω)e−iωtdω+

ˆ ∞

0

ˆ̃E(ω)e−iωtdω,

= Ê(−)(t)+ Ê(+)(t). (14)

Here Ê(+)(t) and Ê(−)(t) are the positive and negative fre-
quency parts of the electric field operator, and since the elec-

tric field operator Ê(t) is Hermitian, we have ˆ̃E(ω) = ˆ̃E†(−ω).
Representing this way, we write the pump, signal and idler
electric field operators in the following form

Êp(r, t) = Ê(+)
p (r, t)+ Ê(−)

p (r, t),

Ês(r, t) = Ê(+)
s (r, t)+ Ê(−)

s (r, t),

Êi(r, t) = Ê(+)
i (r, t)+ Ê(−)

i (r, t).

Here Ê(+)
p (r, t) is the positive frequency part of the pump elec-

tric field operator, etc. Using the above forms for the field oper-
ators, the Hamiltonian in equation (13) can be written as

ĤI(t) = ϵ0

ˆ
V
χ(2)

[
Ê(+)
p (r, t)+ Ê(−)

p (r, t)
]

×
[
Ê(+)
s (r, t)+ Ê(−)

s (r, t)
][
Ê(+)
i (r, t)+ Ê(−)

i (r, t)
]
d3r.

(15)

The resulting expression for the interaction Hamiltonian
is a sum of eight different terms with all possible combina-
tions of the three fields. However, there are only two terms,
Ê(+)
p (r, t)Ê(−)

s (r, t)Ê(−)
i (r, t) and Ê(−)

p (r, t)Ê(+)
s (r, t)Ê(+)

i (r, t),
that lead to energy conserving processes and thus contrib-
ute appreciably to the down-conversion process. The contri-
butions due to the other six terms get averaged out when the
interaction Hamiltonian ĤI(t) is integrated over time. There-
fore, we neglect the contributions due to these other terms.
Neglecting these contributions is equivalent to making the
rotating-wave approximation as in the case of treating atomic
absorption and emission processes (see [93], section 2.3).
We note that these approximations hold only for second-
order non-linear optical processes such as SPDC and that for
the higher-order non-linear optical processes the non-energy-
conserving terms may lead to important contributions. The
effective interaction Hamiltonian for the process of parametric
down-conversion can thus be given by the following simplified
form:

ĤI(t) = ϵ0

ˆ
V
χ(2)Ê(+)

p (r, t)

× Ê(−)
s (r, t)Ê(−)

i (r, t)d3r+H.c., (16)

where H.c. stands for Hermitian conjugate. Next, we need to
express the above Hamiltonian in terms of the photon creation
and annihilation operators. For this purpose, we first realize

that a classical electric field E(r, t) can be represented in terms
of its spectral decomposition as

E(r, t) =
ˆ ∞

−∞
Ẽ(r,ω)e−iωtdω,

=

ˆ ∞

−∞
Ẽ(ρ,z;ω)e−iωtdω,

=

ˆ ∞

−∞

(ˆ
A a(q,ω)ei(q·ρ+kzz)d2q

)
e−iωtdω. (17)

HereA is a constant, k= (kx,ky,kz) = (q,kz), r= (x,y,z) =
(ρ,z), and a(q,ω) is the angular spectrum representation of
the field. We know that the spectral decomposition of a field
remains the same irrespective of whether it is represented
within classical or quantum description. Therefore, we use
the above representation to write the quantized electric fields
simply by replacing a(q,ω) with the corresponding annihila-
tion operator â(q,ω) [92, 94]. This way, we write the positive-
frequency part of the signal, idler and pump field operators as

Ê(+)
s (r, t) =

ˆ ˆ
d2qsdωsAse

i(qs·ρ+kszz−ωst)â(qs,ωs),

Ê(+)
i (r, t) =

ˆ ˆ
d2qidωiAie

i(qi·ρ+kizz−ωit)â(qi,ωi),

Ê(+)
p (r, t) =

ˆ ˆ
d2qpdωpApe

i(qp·ρ+kpzz−ωpt)V(qp,ωp). (18)

Here, we note that in quantizing the electromagnetic fields
one ends up with a summation over wave-vectors. However,
in the limit when the quantization volume goes to infinity, the
discrete set of wave-vectors becomes continuous and the sum-
mation can be replaced by an integral. In writing the form of
the field operators above, we have made use of this limiting
condition.We further note that the intensity of the pump field is
usually several orders of magnitude larger than that of the sig-
nal and idler fields. Therefore, we treat the pump field classic-
ally and replace the annihilation operator corresponding to the
pump field by the field amplitude V(qp,ωp). With this assump-
tion and using the form of the field operators in equation (18),
we write equation (16) as

ĤI(t) = ϵ0χ
(2)ApA

∗
s A

∗
i

ˆ
V
d3r
ˆ ˆ ˆ

dωpdωsdωi

×
ˆ ˆ ˆ

d2qpd
2qsd

2qiV
(
ωp,qp

)
× exp

[
i(qp− qs− qi) ·ρ+ i(kpz− ksz− kiz)z

]
× ei(ωs+ωi−ωp)tâ†(qs,ωs)â

†(qi,ωi)+H.c. (19)

Here, although χ(2) and Aj with j= p, s, and i are frequency
dependent quantities, they vary very slowly within the fre-
quency ranges of interest for most experimental situations. So,
we have taken them outside of the integral. Equation (19) is
the interaction Hamiltonian for spontaneous parametric down-
conversion.
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Figure 2. A typical experimental arrangement for SPDC. The pump
field is along the z direction. The figure shows the laboratory frame
coordinates of the non-linear crystal of thickness L.

2.4. The generation of entangled two-photon field

We now derive the state of the entangled photons that gets
generated in SPDC. Let us consider a pump field interact-
ing with a non-linear optical crystal of thickness L (see fig-
ure 2). We assume that the pump photon starts interacting with
the crystal at time t=−t0 and that the state |ψ(−t0)⟩ of the
down-converted signal and idler photons at that instant is given
by |ψ(−t0)⟩= |vac⟩s|vac⟩i, where |vac⟩ represent a vacuum
mode. The state of the two photons evolves under Hamilto-
nian HI(t) of equation (19) and at the end of the interaction,
that is, at time t= 0, the two-photon state is given by

|ψ(0)⟩= e−
i
ℏ
´ 0
−t0

ĤI(t)dt|ψ(−t0)⟩. (20)

The parametric interaction is assumed to be very weak, so
the state in equation (20) can be approximated by the first two
terms of a perturbation expansion. The first term is simply the
initial vacuum state |ψ(−t0)⟩. The second term is the state of
the down-converted two-photon field and is given by

|ψtp⟩=− i
ℏ

ˆ 0

−t0

ĤI(t)dt|ψ(−t0)⟩. (21)

The third and the higher-order terms in the expansion are
the states of four- and higher-photon fields, and we assume
that the probability of generation of these states are negligible.
Substituting the expression of ĤI(t) from equation (19) into the
above equation, we obtain the state of the two-photon field at
the exit face inside the non-linear crystal:

|ψtp⟩=
ϵ0
iℏ
χ(2)ApA

∗
s A

∗
i

ˆ 0

−t0

dt
ˆ
V
d2ρdz

ˆ ˆ ˆ
dωpdωsdωi

×
ˆ ˆ ˆ

d2qpd
2qsd

2qiV(ωp,qp)

× exp
[
i(qp− qs− qi) ·ρ+ i(kpz− ksz− kiz)z

]
× exp{i(ωs+ωi−ωp)t}

× â†(qs,ωs)â
†(qi,ωi)|vac⟩s|vac⟩i+H.c., (22)

where we have substituted d3r=
´ ´

d2ρdz. The interaction
time t0 is assumed to be much longer than the time scale over
which down-conversion takes place. Therefore, the limits of
time integration can be extended to −∞ and ∞ [90, 95] such
that the time integration yields

ˆ ∞

−∞
ei(ωs+ωi−ωp)tdt= δ (ωs+ωi−ωp) . (23)

Similarly, we assume that the transverse area of the non-linear
crystal is much larger compared to the transverse area of the
pump field, and therefore we write the space integral in equa-
tion (22) as

ˆ ∞

−∞
exp

{
i(qp− qs− qi) ·ρ

}
d2ρ

×
ˆ 0

−L
exp{i(kpz− ksz− kiz)z}dz,

= δ
(
qp− qs− qi

)
Φ(ωs, ωi,qs,qi), (24)

where

Φ(ωs, ωi,qs,qi) =
ˆ 0

−L
exp [i(kpz− ksz− kiz)z]dz,

= L sinc

[
(ksz+ kiz− kpz)

L
2

]
exp

[
i(ksz+ kiz− kpz)

L
2

]
,

is called the phase-matching function. The action of the cre-
ation operators in equation (22) is given by

â†(qs,ωs)â
†(qi,ωi)|vac⟩s|vac⟩i = |qs,ωs⟩s|qi,ωi⟩i, (25)

where |qs,ωs⟩s represents a state having one signal photonwith
transverse wave-vector qs and frequency ωs. The Hermitian
conjugate part of |ψtp⟩ in equation (22) contains the operator
â(qs,ωs)â(qi,ωi). The action of this operator on the vacuum
state is given by

â(qs,ωs)â(qi,ωi)|vac⟩s|vac⟩i = 0. (26)

Therefore, using equations (23) through (26), we write equa-
tion (22) as

|ψtp⟩= A
ˆ ˆ ˆ

dωpdωsdωi

ˆ ˆ ˆ
d2qpd

2qsd
2qi

×V(ωp,qp)Φ(ωs, ωi,qs,qi)δ (ωs+ωi−ωp)

×δ
(
qs+ qi− qp

)
|qs,ωs⟩s|qi,ωi⟩i, (27)

where A= ϵ0
iℏχ

(2)ApA∗
s A

∗
i . Now, integrating over dωp and dqp,

we get

|ψtp⟩= A
ˆ ˆ

dωsdωi

ˆ ˆ
d2qsd

2qiV(ωs+ωi,qs+ qi)

×Φ(ωs, ωi,qs,qi)|qs,ωs⟩s|qi,ωi⟩i. (28)

The above equation represents the state of the two-photon field
at the exit face of the crystal produced by SPDC.
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Figure 3. Schematic diagram depicting the situation when the
pump beam waist is located at a distance d behind the crystal.

2.5. Effects due to the beam waist location of a Gaussian
pump beam

In most situations, the pump field is taken to be in the form
of a Gaussian beam and the location of the Gaussian beam
waist is taken to coincide with that of the crystal. However, in
many experimental situations, the location of the pump beam
waist does not coincide with that of the crystal. Effects of this
kind have been studied in several works in the past [55, 81,
82, 96, 97], and in this subsection, we present detailed calcu-
lation illustrating how the beam-waist location of the pump
field affects the SPDC process. Let us consider the situation
shown in figure 3, in which the non-linear crystal is at a dis-
tance d away from the beam waist location of the Gaussian
pump field. Our aim is to find out the form of the pump field
V(qs+ qi) that needs to be used in equation (81). In order to do
this, we first define a coordinate system (x,y,z′) = (ρ,z′) such
that the location of the pump beamwaist is at z′ = 0.We define
another coordinate system (x,y,z) = (ρ,z) such that the crys-
tal is located at z= 0. Thus we have z′ = z+ d. The electric
field amplitude Ṽ(ρ,z′) at a given z′ can be written as

Ṽ(ρ,z′) =
ˆ ˆ

V(qp)ei(qp·ρ+kpzz
′)d2q, (29)

where V(qp) is the angular spectrum of the field at z′ = 0 and
where we have used kp = (qp,kpz). Now using z′ = z+ d, we
rewrite equation (29) in the (ρ,z) coordinate system as

Ṽ(ρ,z) =
ˆ ˆ

V(qp)eikpzdei(qp·ρ+kpzz)d2q, (30)

Here Ṽ(ρ,z) is the same electric field amplitude but written
in the (ρ,z) coordinate system. Comparing equations (29) and
(30), we see that V(qp)eikpzd can be taken as the angular spec-
trum of the field at z= 0. Therefore, we find that if the angular
spectrum of the pump field is known at a distance d behind the
crystal, the angular spectrum at the crystal plane can simply
be taken as V(qp)eikpzd.

In most cases, the pump field satisfies the paraxial
approximation. Under this approximation, we write kpz ≈
kp− |qp|2/2kp, where kp = |kp|= ωp0/c= (ωs0 +ωi0)/c. For
a pump field with Gaussian spectrum, the angular spectrum
at the beam waist is given by [98] V(qp) = exp

[
−|qp|2w2

0/4
]
,

where w0 is the beam waist at z=−d. Therefore the angular
spectrum of the field at the crystal location, that is, at z= 0

Figure 4. Schematic diagram illustrating effects due to the
non-normal incidence of the pump field on the non-linear crystal.

can be written as

V(qp)eikpzd = exp

[
−
|qp|2w2

0

4

]
exp

[
−i

|qp|2d
2kp

]
eikpd. (31)

We note that in the context of using the above spectrum for
calculating the coincidence count rate in equation (81), the
constant factor eikpd does not make any contribution. This is
the expression for V(qp) = V(qs+ qi) that we will be using in
equation (81) for calculating the coincidence count rates.

2.6. Effects due to the non-normal incidence of pump field
on the SPDC crystal

In experimental situations, it is quite often the case that the
SPDC crystal is oriented in such a way that the pump field is
incident on the crystal at an angle other than 900. In this sub-
section, we consider the effects on the two-photon coincidence
count rate caused by the non-normal incidence. This situation
is shown in figure 4. The SPDC crystal is rotated by an angle
α with respect to the pump propagation direction. Inside the
crystal, the z′ axis represents the direction of propagation of
the pump field when it is incident perpendicular to the crystal,
that is, when α= 0, while the z axis represents the direction of
propagation of the pump beam inside the rotated crystal. The
angle between the optic axis and the z′ axis is represented by
θp0 while θp represents the angle between the z axis and the
optic axis of the rotated crystal. Using Snell’s law of refrac-
tion we write sin α= npe sin β, where α is the angle of incid-
ence of the pump field, β is the angle of refraction inside the
crystal, and npe is the refractive index of the pump field which
is taken to be extra-ordinary polarized. Here, we note that the
pump field polarization is decided by the phase-matching con-
ditions, and we show in the next section through the phase-
matching considerations that the pump field has to be extra-
ordinary polarized for negative uniaxial crystals such as BBO.
Therefore, we write

β = sin−1
(
sin α
npe

)
. (32)
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s i

p

s i

p

(a) (b)

Figure 5. Phase-matching diagrams for the (a) collinear and (b)
non-collinear emission geometries. The condition for perfect
phase-matching is kpz = ksz+ kiz.

From the ray diagram shown in figure 4, we obtain

θp = θp0 +β = θp0 + sin−1
(

sin α
npe

)
. (33)

Thus we see that the non-normal incidence of the pump field
affects the angle between the optic axis and the pump propaga-
tion direction. Therefore, we need to use θp instead of θp0 when
calculating kpz and subsequently the phase-matching function
Φ(qs,qi) in equation (28).

3. Polarization effects in SPDC

3.1. Polarization effects due to phase matching constraints

The generation and emission-directions of SPDC photons are
decided by the constraints imposed by the conservation of
energy and momentum. These constraints are referred to as
the phase-matching conditions. Numerous textbooks discuss
phase matching based on crystal class and permutation sym-
metries [16, 17, 99–102]. If the directions of propagation of
the down-converted signal and idler photons are along the
propagation direction of the pump photon then it is known as
the collinear phase matching. Alternatively, in non-collinear
phase matching, the signal and idler photons propagate in dir-
ections non-collinear with that of the pump photon. The phase
matching diagrams of collinear and non-collinear SPDC are
shown in figure 5(a) and (b), respectively. As we see from
equation (28), the efficiency of the SPDC process, that is, the
generation probablity of the down-converted photons depends
on the phase-matching function Φ(qs,qi) through the wave
vector mismatch ∆kz = ksz+ kiz− kpz. It can be shown that
this efficiency goes as sinc2 [∆kzL/2]. When ∆kz= 0, that is,
when the phase matching is perfect, the efficiency is max-
imum. The efficiency of the SPDC process decreases as the
phase mismatch ∆kz increases [11].

Next, we recall that in deriving the Hamiltonian in equa-
tion (19), we had considered only the scalar fields even though
polarization plays an important role in deciding the phase-
matching condition. In this section, we consider the polar-
ization effects due to the phase matching constraints. Our
approach is to first find out the possible polarization scenarios
that can satisfy the phase-matching condition and for those
scenarios use equation (28) for calculating the detection prob-
abilities. In order to list the possible polarization scenarios that
can satisfy the phase matching, we analyze it in the collinear

configuration. In this configuration, the phase matching con-
straint ∆kz= 0 requires the following equation to be satisfied
(see [85], section 2.3):

npσ(ωp0)ωp0
c

=
nsσ(ωs0)ωs0

c
+
niσ(ωi0)ωi0

c
, (34)

where as earlier, p, s, and i stand for pump, signal, and idler,
respectively. The index σ can take two values. If the polariza-
tion direction is perpendicular to the plane formed by the optic
axis and the propagation direction then it is called ordinary
polarized, and in that case σ= o. Alternatively, if the polar-
ization direction is parallel to the plane formed by the optic
axis and the propagation direction then it is called extraordin-
ary polarized, and in that case σ= e [102]. Therefore, npe(ωp0)
represents the refractive index of the extra-ordinary polar-
ized pump photon at frequency ωp0, etc. Combining the above
equation with energy conservation equation, that is, ωp0 =
ωs0 +ωi0, we rewrite equation (34) as

npσ(ωp0)− nsσ(ωs0) =
ωi0
ωp0

[niσ(ωi0)− nsσ(ωs0)] . (35)

Here, we note that ωp0 > ωs0 ≥ ωi0. We now consider all pos-
sible polarization scenarios for pump, signal and idler photons
one by one and find out the polarization scenarios that can
potentially satisfy the phase matching condition. We assume
normal dispersion for the down-conversion crystal, that is,
we assume that the refractive index increases with frequency.
BBO crystal is an example of a down-conversion crystal that
has normal dispersion for both ordinary and extraordinary
polarization [103]. There can be a total of eight possible polar-
ization scenarios for the pump, signal and idler photons. For
each scenario, we represent the down-conversion process by a
rightarrow and the individual pump, signal and idler photons
only by their polarization index. For example, e→ o+ e rep-
resents an extraordinary polarized pump down-converting into
an ordinary signal photon and an extraordinary idler photon,
etc.

Case I: e→ e+ e: In this case, the pump, signal and idler
photons are all extraordinary polarized and therefore equation
(35) can be written as

npe(ωp0)− nse(ωs0) =
ωi0
ωp0

[nie(ωi0)− nse(ωs0)] . (36)

We note that npe(ωp0)> nse(ωs0),nie(ωi0). Considering ωs0 ≥
ωi0 we find that the above equation cannot be satisfied. There-
fore, the phase matching condition can never be satisfied
and thus this particular polarization scenario is not possible.

Case II: o→ o+ o: In this case, the pump, signal and idler
photons are all ordinary polarized and therefore the equation
(35) can be written as

npo(ωp0)− nso(ωs0) =
ωi0
ωp0

[nio(ωi0)− nso(ωs0)] . (37)

We note that npo(ωp0)> nso(ωs0),nio(ωi0). As we assume
ωs0 ≥ ωi0, we find that the equation above cannot be satisfied.
Therefore, the phase matching condition can never be satisfied
and thus this particular polarization scenario is not possible.

9



J. Opt. 22 (2020) 083501 Tutorial

Case III: e→ o+ o: In this case, equation (35) can be
written as

npe(ωp)− nso(ωs0) =
ωi0
ωp0

[nio(ωi0)− nso(ωs0)] . (38)

We find that for ωs0 ≥ ωi0, the right hand side of the above
equation is negative. Now in order for the left hand side of this
equation to be negative, we have to ensure that no > ne. There-
fore, this scenario can indeed be satisfied by negative uniaxial
crystals such as BBO.

Case IV: o→ e+ e: In this case, equation (35) can be
written as

npo(ωp0)− nse(ωs0) =
ωi0
ωp0

[nie(ωi0)− nse(ωs0)] . (39)

We find that for ωs0 ≥ ωi0, the right hand side of equation (39)
is negative. Now in order for the left hand side of this equa-
tion to be negative, we have to ensure that npo(ωp0)< nie(ωi0).
Therefore, this scenario can be satisfied by positive uniaxial
crystals.

Case V: e→ o+ e: Equation (35) in this case can be writ-
ten as

npe(ωp0)− nso(ωs0) =
ωi0
ωp0

[nie(ωi0)− nso(ωs0)] . (40)

We take the SPDC to be degenerate, that is, ωp0 = 2ωs0 =
2ωi0 and assume that the dispersion relation is linear for
both the extraordinary and ordinary polarizations. We thus
have npe(2ωs0)≈ 2npe(ωs0). Now, substituting npe(ωs0) =
nie(ωs0) = ne(ωs0) and nso(ωs0) = no(ωs0), we write the above
equation as

3ne(ωs0)≈ no(ωs0). (41)

This equation holds only when ne < no, that is, when the crys-
tal is negative uniaxial.

CaseVI: e→ e+ o:Equation (35) in this case can bewrit-
ten as

npe(ωp)− nse(ωs0) =
ωi0
ωp0

[nio(ωi0)− nse(ωs0)] . (42)

Considering the same assumptions as in the above case, we
write the above equation as

3ne(ωs0)− no(ωi0)≃ 0, (43)

This equation holds only when ne < no, that is, when the crys-
tal is negative uniaxial.

Case VII: o→ e+ o: Equation (35) in this case can be
written as

npo(ωp0)− nse(ωs0) =
ωi0
ωp0

[nio(ωi0)− nse(ωs0)] . (44)

Considering the same assumptions as in the above case, we
write the above equation as

3no(ωs0)− ne(ωs0)≃ 0. (45)

This equation holds only when no < ne, that is, when the crys-
tal is positive uniaxial.

Case VIII: o→ o+ e: Equation (35) in this case can be
written as

npo(ωp0)− nso(ωs0) =
ωi0
ωp0

[nie(ωi0)− nso(ωs0)] . (46)

Considering the same assumptions as in the above case, we
write the above equation as

3no(ωs0)− ne(ωs0)≃ 0. (47)

This equation holds only when no < ne, that is, when the crys-
tal is positive uniaxial. In general, when both the signal and
idler photons have the same polarization, it is referred to as the
type-I phase matching and when they have orthogonal polar-
izations, it is referred to as the type-II phase matching [76,
78]. Thus, the possible polarization scenarios that can satisfy
the phase-matching conditions can be represented in a tabular
form as follows:

Type Positive uniaxial Negative uniaxial

type-I o→ e+ e e→ o+ o
o→ o+ e e→ e+ o

type-II o→ e+ o e→ o+ e

Thus for positive uniaxial crystals, the pump field polariz-
ation has to be ordinary in order to satisfy the phase-matching
condition. Similarly, for negative uniaxial crystals, the pump
field polarization needs to be extraordinary in order to satisfy
the phase matching condition.

3.2. Wave propagation inside the SPDC crystals

In the previous subsection, we found out all possible polariz-
ation scenarios that can satisfy the phase-matching condition.
In this subsection, we study how polarization affects the wave
propagation inside an SPDC crystal. We note that in what fol-
lows we restrict our analysis only to negative uniaxial crystals
and for brevity we represent the refractive indices without their
frequency arguments.We start by writing the electric displace-
ment vector D in terms of the electric field E inside an elec-
trically anisotropic medium [104]: Dx

Dy

Dz

=

 ϵxx ϵxy ϵxz
ϵyx ϵyy ϵyz
ϵzx ϵzy ϵzz

 Ex
Ey
Ez

 . (48)

Here, (x, y, z) is the Cartesian coordinate system andDx and Ex
are the x-component of the electric displacement vector and
electric field, etc. The 3× 3 matrix is known as the dielectric
tensor with εij being its elements, where i, j= x, y, z. Suppose
the dielectric tensor can be written in the diagonal form in the
(x′,y′,z′) coordinate system, that is,

ϵ=

 ϵx′ 0 0
0 ϵy′ 0
0 0 ϵz′

 , (49)
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where (x′,y′,z′) denotes the new coordinate system, which is
obtained by rotating the (x, y, z) coordinate system by an angle
θp around the y-axis as shown in figure 6. The two coordinate
systems are related as x′

y′

z′

=

 cosθp 0 sinθp
0 1 0

−sinθp 0 cosθp

 x
y
z

 . (50)

Next, we write ϵz′/ϵ0 = n2e and ϵx′/ϵ0 = ϵy′/ϵ0 = n2o and
express the electric displacement vector of equation (48) in
the new coordinate system as Dx′

Dy′

Dz′

= ϵ0

 n20 0 0
0 n20 0
0 0 n2e

 Ex′
Ey′
Ez′

 . (51)

We know that a monochromatic electric field E(r, t) propagat-
ing through an anisotropic medium can be written as

E(r, t) = E0(r) exp{i(k.r−ωt)} , (52)

where k= qxx̂+ qyŷ+ kzẑ and r= xx̂+ yŷ+ zẑ. In the
(x′,y′,z′) coordinate system, the field is given by

E(r′, t) = E0(r′) exp
{
i(k′.r′ −ωt)

}
, (53)

where k′ = qx′ x̂′ + qy′ ŷ′ + kz′ ẑ′ and r′ = x′x̂′ + y′ŷ′ + z′ẑ′. The
wave equation in the (x′,y′,z′) coordinate system can be writ-
ten as

∇′(∇′ ·E)−∇′2E=−µ0
∂2D
∂t2

, (54)

where ∇′ = x̂′ ∂
∂x′ + ŷ′ ∂

∂y′ + ẑ′ ∂
∂z′ . Using equation (51), we

write the above wave equation as

(k′ ·E)k′ − |k′|2E=−
(ω
c

)2
(
ϵ

ϵ0

)
E. (55)

The above vector equation yields three simultaneous scalar
equations involving the three components of the electric field:

[(noω
c

)2
− q2y′ − k2z′

]
Ex′ + qx′qy′Ey′ + qx′kz′Ez′ = 0,

qx′qy′Ex′ +

[(noω
c

)2
− q2x′ − k2z′

]
Ey′ + qy′kz′Ez′ = 0,

qx′kz′Ex′ + qy′kz′Ey′ +

[(neω
c

)2
− q2x′ − q2y′

]
Ez′ = 0.

A non-trivial solution for Ex′ , Ey′ , Ez′ exists only if the determ-
inant of the coefficients becomes zero, that is, only if

(
ω
c

)2 [(ω
c no

)2 − q2x′ − q2y′ − k2z′
]
×[(

ω
c none

)2 − (noqx′)2 − (noq′y)
2 − (nekz′)2

]
= 0. (56)

Since ω/c ̸= 0, the above condition requires that either

q2x′ + q2y′ + k2z′

n2o
=
ω2

c2
, (57)

or

(noqx′)
2 +(noqy′)

2 +(nekz′)
2 − (

ω

c
none)

2 = 0. (58)

We note that the relation given in equation (57) is the disper-
sion relation for ordinary polarized light field and the rela-
tion given in equation (58) is the dispersion relation for the
extraordinary polarized light field. Now, we need to write both
these dispersion relations in the (x, y, z) coordinate system. We
note that the phase of a plane wave remains invariant under
coordinate transformation, that is, k · r= k′ · r′, which in the
component form can be written as

(qxx+ qyy+ kzz) = qx′(xcosθp+ zsinθp)+ qy′y

+ kz′(−xsinθp+ zcosθp). (59)

Comparing the coefficients of x, y, z on both sides of the above
equation, we obtain

qx = qx′ cosθp− kz′ sinθp, (60)

qy = qy′ , (61)

kz = qx′ sinθp+ kz′ cosθp. (62)

These relations can be inverted to yield

qx′ = qx cosθp+ kz sinθp, (63)

qy′ = qy, (64)

kz′ =−qx sinθp+ kz cosθp. (65)

Using the above relations, wewrite equation (57) in the (x, y, z)
coordinate system as

q2x + q2y + k2z
n2o

=
ω2

c2
. (66)

Therefore, within the paraxial approximation, the longitudinal
wave vector component kz of an ordinary polarized light field
inside an anisotropic medium can be written as [81]

kz =

√(
no
ω

c

)2
− q2x − q2y ≈ no

ω

c
− c

2noω
(q2x + q2y). (67)

Similarly, using equations (63)–(65), we write equation (58)
in the (x, y, z) coordinate system as[

sin2 θp
n2e

+
cos2 θp
n2o

]
k2z +

[
cos2 θp
n2e

+
sin2 θp
n2o

]
q2x +

q2y
n2e

11
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Figure 6. The coordinate representation of the non-linear crystal in
both lab frame (x, y, z) and rotated frame (x′,y′,z′). The rotated
coordinate system is rotated by an angle θp around the y-axis.

+

[
1
n2e

− 1
n2o

]
sin2θpqxkz−

(ω
c

)2
= 0. (68)

The above equation is in the form of ak2z + bkz+ c= 0. There-
fore, solving for kz and using the paraxial approximation, the
longitudinal wave vector component kz of the extraordinary
polarized light field inside an anisotropic medium can be writ-
ten as [81]

kz =−αqx+
√(

η ω
c

)2 −β2q2x − γ2q2y ,

≈−αqx+ η ω
c −

c
2ηω

[
β2q2x + γ2q2y

]
, (69)

where

α=
(n2o− n2e)sinθp cosθp
n2o sin

2 θp+ n2e cos2 θp
, (70)

β =
none

n2o sin
2 θp+ n2e cos2 θp

, (71)

γ =
no√

n2o sin
2 θp+ n2e cos2 θp

, (72)

η =
none√

n2o sin
2 θp+ n2e cos2 θp

. (73)

Here θp is the angle between the optic axis and the pump
propagation direction, that is, the z-axis. By changing the angle
θp, one can generate entangled photons with various different
phase matching conditions.

Figure 7. Experimental set up for the generation of SPDC photon
pairs. The pump beam waist wo is located at a distance d from the
front face of the crystal. The photons are detected at a distance z
from the crystal.

4. Calculating the detection probabilities of the
generated entangled photons

In this section, we derive explicit expressions for the phase-
matching function for various possible polarization scenarios.
We restrict our analysis to the BBO crystal which is a negat-
ive uniaxial crystal. We note that the dispersion relations for
the ordinary and extraordinary polarized light inside the BBO
crystal are given by [103]

n2o = 2.7405+
0.0184

λ2 − 0.0179
− 0.0155λ2, (74)

n2e = 2.3730+
0.0128

λ2 − 0.0156
− 0.0044λ2. (75)

Here λ is the wavelength of light in µm. Also, for brevity, we
show the refractive indices without their corresponding fre-
quency arguments.

4.1. Calculating the coincidence and the individual photon
count rates

In this article, we are primarily interested in studying the two-
photon wavefunction in the position and linear momentum
bases. Therefore, in what follows, we assume that the signal,
idler and pump fields are monochromatic with central frequen-
cies given by ωs0, ωi0, and ωp0, respectively. With this assump-
tion and using equation (28), we write the state of the down-
converted two-photon field at the exit face of the crystal as

|ψtp⟩= A
ˆ ˆ

d2qsd
2qiV(qs+ qi)Φ(qs,qi)|qs⟩s|qi⟩i. (76)

Here, we do not explicitly show the frequency arguments. We
now calculate the probability of detecting the signal and idler
photons at a distance z from the crystal at locations rs ≡ (ρs,z)
and ri ≡ (ρi,z), respectively, in coincidence (see figure 7). The
coincidence count rate Rsi(rs,ri), which is the probability per
(unit time)2 that a signal photon is detected at position (ρs,z)
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and an idler photon is detected at position (ρi,z), is given by
[92]:

Rsi(rs,ri) = Rsi(ρs,ρi,z)

= αsαi⟨ψtp|Ê(−)
s (rs)Ê

(−)
i (ri)Ê

(+)
i (ri)Ê(+)

s (rs)|ψtp⟩,

= αsαi

∣∣∣⟨vac|s⟨vac|i|Ê(+)
s (rs)Ê

(+)
i (ri)|ψtp⟩

∣∣∣2, (77)

Here αs and αi denote the quantum efficiencies of the detect-
ors kept at locations (ρs,z) and (ρi,z), respectively. Ê

(+)
s (rs)

and Ê(+)
i (ri) denote the positive-frequency parts of the elec-

tric field operators at detection locations (ρs,z) and (ρi,z),
respectively. The two field operators can be written as

Ê(+)
s (rs) = Ê(+)

s (ρs,z),

=

ˆ
d2qse

ikszei(qs·ρs−q2s z/2ks)â(qs), (78)

Ê(+)
i (ri) = Ê(+)

i (ρi,z),

=

ˆ
d2qie

ikizei(qi·ρi−q2i z/2ki)â(qi). (79)

Here q2s = |qs|2, q2i = |qi|2, ks = |ks|= ωs0/c, and ki = |ki|=
ωi0/c, where c is the speed of light. We note that in writing
the electric field operators Ê(+)

s (ρs,z) and Ê
(+)
i (ρi,z) above,

we have made use of the paraxial approximation. Substituting
from equations (76), (78) and (79) in equation (77), we obtain
the following expression for the coincidence count rate:

Rsi(ρs,ρi,z) = αsαi

∣∣∣∣∣A
ˆ ˆ ˆ ˆ

d2qsd
2qid

2q′sd
2q′i

× ei(ks+ki)zV(qs+ qi)Φ(qs,qi)

× exp

[
i

(
q′s ·ρs+ q′i ·ρi−

|q′s|2z
2ks

− |q′i |2z
2ki

)]

×⟨vac|s⟨vac|iâ(q′s)â(q′i)|qs⟩s|qi⟩i

∣∣∣∣∣
2

. (80)

Now using the relation â(q′s)â(q
′
i)|qs⟩s|qi,⟩i = δ(q′s−

qs)δ(q
′
i − qi)|vac⟩s|vac⟩i, we write equation (80) as

Rsi(ρs,ρi,z) = αsαi

∣∣∣∣∣A
ˆ ˆ

d2qsd
2qi e

i(ks+ki)z

×V(qs+ qi)Φ(qs,qi)

× exp

[
i

(
qs ·ρs+ qi ·ρi−

|qs|2z
2ks

− |qi|2z
2ki

)]∣∣∣∣∣
2

.

(81)

In addition to the coincidence count rate, we also calculate the
photon count rates of the individual signal and idler photons
at locations (ρs,z) and (ρi,z), respectively. The photon count
rate at the signal location (ρs,z) is obtained by integrating the
coincidence count rates over all possible idler locations, and

vice versa. Thus the signal and idler photon count rates at loc-
ations (ρs,z) and (ρi,z), respectively, can be written as

Rs(ρs,z) =
ˆ
Rsi(ρs,ρi,z)d

2ρi, (82)

Ri(ρi,z) =
ˆ
Rsi(ρs,ρi,z)d

2ρs. (83)

4.2. Calculating the conditional detection probability

In addition to the coincidence and individual photon count
rates, in many experimental situations, one is also interested in
the conditional detection probabilities of individual photons.
For example, it may of interest in certain experiment to calcu-
late the detection probability of the signal photon as a function
of position ρs given that the idler photon is already detected
at position ρi0. In fact, quite often, by detecting an idler at
a particular position the region over which the signal photon
could be found becomes very localized. The width of this
region is called the position-correlation width. The position-
correlation of entangled photons have been studied and util-
ized in several experimental situations [57, 105–107]. The
position-correlation width is calculated as follows. For the
fixed idler position (ρi0,z) the coincidence count rate can be
written using equation (81) as

Rsi(ρs,ρi0,z) = αsαi

∣∣∣∣∣A
ˆ ˆ

d2qsd
2qi e

i(ks+ki)z

×V(qs+ qi)Φ(qs,qi)

× exp

[
i

(
qs ·ρs+ qi ·ρi0 −

|qs|
2z

2ks
− |qi|

2z
2ki

)]∣∣∣∣∣
2

,

(84)

where rs = (ρs,z) and ri0 = (ρi0,z). The width of
Rsi(ρs,ρi0,z) is the position-correlation width of the signal
photon at a plane z away from the crystal.We note that in a sim-
ilar manner, one can also calculate the momentum-correlation
width.

Equation (81) for the coincidence count rate and equa-
tions (82) and (83) for photon count rates at the signal and
idler locations have been derived for a very generic pump
field and the phase matching function. We now calculate the
phase-matching function Φ(qs,qi) for both type-I and type-II
phase-matching conditions. Using the expression for Φ(qs,qi)
in a particular phase-matching condition, one can calculate the
coincidence count rate using equation (81) and the individual
photon count rates using equations (82) and (83).

4.3. Calculating the detection probabilities for type-I phase
matching

In type-I phase matching, the pump field is extraordinary
polarised and the down-converted fields are ordinary polar-
ised. Therefore, with paraxial approximation, the z-component
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of the pump, signal, and idler fields are given by

kpz =−αpqpx+ ηp
ωp0
c

−
c
[
β2
pq

2
px+ γ2pq

2
py

]
2ηpωp0

, (85)

ksz = nso
ωs0
c − c

2nsoωs0
(q2sx+ q2sy), (86)

kiz = nio
ωi0
c − c

2nioωi0
(q2ix+ q2iy). (87)

Here

αp =
(n2po− n2pe)sinθp cosθp

n2po sin
2 θp+ n2pe cos2 θp

,

βp =
nponpe

n2po sin
2 θp+ n2pe cos2 θp

,

γp =
npo√

n2po sin
2 θp+ n2pe cos2 θp

,

ηp =
nponpe√

n2op sin
2 θp+ n2pe cos2 θp

.

The phase-matching function in this case is given by

Φ(qs,qi)→ Φeoo(qs,qi)

= L sinc

[
∆kz

L
2

]
exp

{
i∆kz

L
2

}
, (88)

where

∆kz = ksz+ kiz− kpz,

= nos
ωs0
c

+ noi
ωi0
c

− ηp
ωp0
c

+
c

2ηpωp0

[
β2
pq

2
px+ γ2pq

2
py

]
+αp(qsx+ qix)−

c
2nosωs0

|qs|2 −
c

2noiωi0
|qi|2. (89)

HereΦeoo(qs,qi) represents the phase matching function when
the pump field is extraordinary polarized while both the signal
and idler fields are ordinary polarized.

4.4. Calculating the detection probabilities for type-II phase
matching

In type-II phase matching, the pump field is extraordinary
polarized while the polarizations of the signal and idler fields
are orthogonal to each other. Hence there are two possibilit-
ies for the signal and idler polarizations in this type of phase
matching.

Case-1 : If the signal is extraordinary polarized and the
idler is ordinary, then we have

kpz =−αpqpx+ ηp
ωp0
c

−
c
[
β2
pq

2
px+ γ2pq

2
py

]
2ηpωp0

, (90)

ksz =−αsqsx+ ηs
ωs0
c

−
c
[
β2
s q

2
sx+ γ2s q

2
sy

]
2ηsωs0

, (91)

kiz = nio
ωi0
c − c

2nioωi0
|qi|2. (92)

The phase matching function in this case is given by

Φ(qs,qi)→ Φeeo(qs,qi)

= L sinc

[
∆k1z

L
2

]
exp

{
i∆k1z

L
2

}
, (93)

where

∆k1z = ksz+ kiz− kpz

=−αsqsx+ ηs
ωs0
c

− c
2ηsωs0

[
β2
s q

2
sx+ γ2s q

2
sy

]
+ nio

ωi0
c

− c
2nioωi0

|qi|2 +αp(qsx+ qix)− ηp
ωp0
c

+
c

2ηpωp0

[
β2
p(qsx+ qix)

2 + γ2p(qsy+ qiy)
2
]
. (94)

Here Φeeo(qs,qi) represents the phase matching function. We
note that αp,βp,γp,ηp are calculated by putting in the values
of no and ne at the pump frequency ωp0 while αs,βs,γs,ηs are
calculated by putting in the values of no and ne at the signal
frequency ωs0. The angle θp remains the same in each case.

Case-2 :If the signal is extraordinary polarized and the idler
is ordinary, then we have

kpz =−αpqpx+ ηp
ωp0
c

−
c
[
β2
pq

2
px+ γ2pq

2
py

]
2ηpωp0

, (95)

ksz = nso
ωs0
c − c

2nsoωs0
|qs|2, (96)

kiz =−αiqix+ ηi
ωi0
c

−
c
[
β2
i q

2
ix+ γ2i q

2
iy

]
2ηiωi0

. (97)

The phase matching function in this case is given by

Φ(qs,qi)→ Φeoe(qs,qi)

= L sinc
[
∆k2z L2

]
exp

{
i∆k2z L2

}
, (98)

where

∆k2z = ksz+ kiz− kpz,

= nso
ωs0
c

− c
2nsoωs0

|qs|2 −αiqix+ ηi
ωi0
c

−
c
[
β2
i q

2
ix+ γ2i q

2
iy

]
2ηiωi0

+αp(qsx+ qix)− ηp
ωp0
c

+
c
[
β2
p(qsx+ qix)2 + γ2p(qsx+ qix)2

]
2ηpωp0

. (99)

HereΦeoe is the phase matching function for pump, signal and
idler being extraordinary, ordinary and extraordinary polarized
light respectively. We note that αp,βp,γp,ηp are calculated by
putting in the values of no and ne at the pump frequency ωp0
while αi,βi,γi,ηi are calculated by putting in the values of no
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Figure 8. (a)–(c) The experimental signal photon intensity obtained
using an EMCCD camera kept at z= 35 mm for various different
values of θp. (a) θp = 28.64◦,α= 0.33◦ (b) θp = 28.74◦,α= 0.49◦

(c) θp = 28.95◦,α= 0.82◦. The corresponding numerical plots are
shown in (d)–(f) respectively.

and ne at the idler frequency ωi0. We note that in experimental
situations, both of the above cases of type-II phase matching
are satisfied at the same time. Therefore, the coincidence and
the individual count rates have contributions due to both the
phase-matching functions, Φeoe(qs,qi) and Φeeo(qs,qi).

5. Experimental and numerical results

In this section, we present results of our experimental and
numerical studies. We evaluate equations (81)–(83) in order to
study how the generation of entangled photons depend on vari-
ous experimental parameters. In most cases, we also present
our experimental observations in order to highlight how it
matches with the theory. In our experiments, we use a 405 nm,
100 mW continuous wave laser as the pump field. The pump
power of 100 mW ensured that we were working within the
weak down-conversion limit, in which case the probability of
producing a four-photon state is negligibly small compared to
that of producing a two-photon state. The pump field is in the
form of a Gaussian beam having a beam-waist of 388 µm. For
the non-linear optical crystal, we use a 2 mm thick β-barium
borate (BBO) crystal. By putting suitable wavelength filters,
we make sure that we have degenerate down-conversion with
the central wavelength of both the signal and idler photons
being 810 nm. The distance between the crystal and the beam
waist location turns out to be d= 107.8 cm. For recording
the down-converted photons, we use an Andor iXon Ultra
EMCCD camera having 512× 512 pixels and kept at z= 35
mm. For our numerical experiments, we use the same value of
the experimental parameters as mentioned above.

5.1. Effect of θp on the down-conversion output

First of all we study how the angle θp between the
optic axis and the pump propagation direction affects the
down-conversion output. For a range of values of θp, we

Figure 9. (a)–(d) The experimental signal photon intensity obtained
using an EMCCD camera kept at z= 35 mm for various different
values of θp. (a) θp = 40.48◦,α= 19.11◦ (b) θp =
40.99◦,α= 19.94◦ (c) θp = 41.40◦,α= 20.60◦ (d) θp =
41.78◦,α= 21.23◦. The corresponding numerical plots are shown
in (e)–(h) respectively.

numerically evaluate equations (81) and (82) for various dif-
ferent values of θp and with both type-I and type-II phase-
matching functions as given in equations (88), (93), and (98).
We find that for θp < 28.6◦, no phase-matching gets satisfied.

Figure 8 shows the two-dimensional images of down-
conversion output obtained using an EMCCD camera and also
the numerically calculated two-dimensional plots R(ρs,z) for
z= 35 mm at various different values of θp. Figures 8(a)–(c)
are the experimental plots while (d)–(f) are the corresponding
numerical plots. We see that the collinear type-I phase match-
ing starts around θp = 28.6◦ and the output pattern looks like
a circular blob. When θp is increased further the circular blob
turns into an annulus with non-collinear phase matching. The
radius of the annulus increases as θp is increased. We see a
very good match between theory and experiment.

We find that the type-II phase matching starts around θp =
40.48◦ in the form of two off-axis blobs. Figure 9 shows the
two-dimensional images of down-conversion output obtained
using an EMCCD camera and also the numerically calculated
two-dimensional plot R(ρs,z) for z= 35 mm at various differ-
ent values of θp for type-II phase matching. Figures 9(a)–(d)
are the experimental plots while (e)–(h) are the corresponding
numerical plots. We note that at θp = 40.48◦ both the blobs
have orthogonal polarizations and that one blob corresponds
to the signal photon while the other one corresponds to the
idler photon. As θp is increased, the two blobs open up and
become two separate annuli.When θp is increased even further
the two annuli start overlapping with each other. We find that
the match between theory and experiment is not as good as in
the case of type-I phase-matching. This is because of the fact
that the BBO crystal that we are using in our experiments is
meant to be used for type-I phasematching. Using it for type-II
phase matching means rotating the crystal about the y-axis by
large angles which causes a large background observed in our
experiments. Nevertheless, as far as the overall θp dependence
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Figure 10. Numerically calculated total output power as a function
of θp for (a) type-I phase matching and (b) type-II phase matching.
type-I phase matching takes place for θp > 28.6◦ while type-II
phase matching takes place for θp > 40.48◦.

is concerned, the match between the theory and experiment
seems quite good.

5.2. Effect of θp on the total output power of the
down-converted photons

Next, we numerically study how the output power of the down-
converted photons depend on the angle θp between the optic
axis and the pump propagation direction. For this, we numer-
ically evaluate equations (82) and (83) for various different
values of θp such that it covers both type-I and type-II phase
matching scenarios. For each value of θp, we calculate the
total output power of the down-converted photons by integrat-
ing over the two-dimensional space. In figure 10, we plot this
power as a function of θp. While figure 10(a) shows this plot
over θp values that give type-I phase matching, figure 10(b)
shows this plot over θp values that give type-II phase match-
ing.

We note that in figure 10(a) the output power is nearly
zero for θp < 28.6◦. This means that for θp < 28.6◦, the phase
matching condition is not satisfied.We get type-I phase match-
ing for θp > 28.6◦. We note that once the total output power
reaches its maximum, a further increase in θp value does not
change the output power, which then becomes almost constant
as a function of θp. In figure 10(b), the total output power is
nearly zero for θp < 40.48◦. Here we note that for θp > 28.6◦,
type-I phase matching is always satisfied. However, the size of
the anuulus becomes very large. So, for θp > 40.48◦, we cal-
culate the contribution to the total power only due to the type-
II phase matching. We find that as for θp > 40.48◦, the total
output power due to type-II phase matching starts to increase
and once it reaches its maximum value it stays constant as a
function for θp. Thus for both type-I and type-II phase match-
ing, we find that the total output power after reaching its max-
imum value becomes independent of θp, even though the out-
put intensity pattern changes.

5.3. Variation of type-I intensity with θp

In this subsection, we study how the intensity of down-
converted photons changes as a function of θp for the type-I

Figure 11. (a) Numerically calculated maximum intensity of signal
photons as a function of θp for type-I phase matching condition at
z= 35 mm. Collinear to non-collinear phase matching is achieved
by increasing θp angle. (b) The intensity profile obtained with
collinear phase matching at θp = 28.64◦. (c) The intensity profile
obtained at θp = 28.74◦. Dashed circles are the area over which the
intensity is calculated.

phase matching condition. For this purpose, first we numer-
ically calculate the signal photon intensity R(ρs,z) for vari-
ous different values of θp. Then, as shown in figure 11, we
select small regions on the intensity plots to find the maximum
intensity. Figure 11(a) shows the variation of intensity as a
function of θp. We find that the photons have maximum intens-
ity in the collinear emission geometry. As the phase matching
becomes more and more non-collinear, the intensity becomes
lesser. This result shows that the intensity and thus the photon-
emission efficiency is higher in collinear phase matching com-
pared to the non-collinear phase matching. Thus, in experi-
ments in which more intense photon source is required the col-
linear phase matching should be preferred. Here, as illustrated
in the previous section, we note that the total output power
remains the same irrespective of whether the collinear or the
non-collinear phase matching is satisfied.

5.4. Effect of crystal length on down-conversion

The length of the crystal L directly affects the phase matching
in SPDC. Figure 12 shows the down-conversion intensity
pattern for three different values of the crystal thickness L for
type-I phase matching condition at θp = 28.74◦. We find that L
does not affect the overall non-collinearity of emission. How-
ever, it does affect the width of the annulus, which becomes
broader as L becomes thinner. This means that as the crystal
becomes thinner, the phase-matching becomes more relaxed.
We can also see this through equation (24) that as L increases
the sinc term become narrower. Figure 13 shows the down-
conversion intensity pattern for three different values of the
crystal thickness L for type-II phase matching condition at
θp = 41.78◦. Just as in the case of type-I phase matching, we
find that the overall effect of increasing L is just the tightening
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L=1 mm L=2 mm L=3 mm

Figure 12. Numerically simulated down-conversion intensity
patterns for type-I phase matching at different crystals lengths for θp
= 28.74

◦
. (a) L= 1 mm, (b) L= 2 mm, (c) L= 3 mm.

(a) (b) (c)

L=1 mm L=2 mm L=3 mm

Figure 13. Numerically simulated down-conversion intensity
patterns for type-II phase matching at different crystals lengths for
θp = 41.78

◦
. (a) L= 1 mm, (b) L= 2 mm, (c) L= 3 mm.

of the phase-matching condition which causes the two annuli
to become narrower.

5.5. Effect of θp on the position-correlation width

In this subsection, we evaluate the position-correlation
width for type-I SPDC for various θp values. Using the
expression given in equation (84), we numerically evaluate the
conditional probabilities and plot them in figure 14. In order to
get the correct scaling for the pixel size in numerical simula-
tions, we use the fact that the position-correlation width of the
signal (idler) photon for a fixed position of the idler (signal)
photon at any plane is twice the pump beam size at that plane
(see [108]). In figure 14, we find that for the collinear case
the correlation area forms a circle but as the non-collinearity
increases the correlation area no longer remains symmetric.
Figures 14(a)–(c) show the plots of two-dimensional condi-
tional probablility at various θp values. Figures 14(d)–(f) are
the one-dimensional cuts along the x-direction. Using these
one dimensional plots, we calculate the correlation width
along the x direction and find it to be 847 µm, 581 µm, and
401 µm, respectively, at the three θp values.

6. Two-photon wavefunction in the OAM basis

We have so far mostly discussed the two-photon wavefunc-
tions in the position and momentum bases. The other set
of bases that have more recently become very important for
quantum information is the angular-position and OAM basis.
There are several quantum information applications that have
been proposed based on the OAM of photons.
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Figure 14. Numerical plots of conditional probability of signal
photon with fixed idler position for (a) θp = 28.64◦, (b)
θp = 28.74◦, (c) θp = 28.84◦ the corresponding one dimensional
plots along the x direction are shown in (d)–(f) respectively.

6.1. Introduction to the orbital angular momentum of a photon

It is known that Laguerre–Gaussian (LG) modes are the
solutions to the paraxial Helmholtz equation. The LG modes
form a family of orthogonal modes that have a well defined
orbital angular momentum. The amplitude of an LG mode
has an azimuthal phase dependence e−ilϕ, where l is called
the azimuthal mode index. Allen et al showed that an LG
mode with index l possesses an orbital angular momentum of
lℏ per photon [109]. Thus, within quantum mechanics, l has
the interpretation that a field with an LG amplitude distribu-
tion carries an orbital angular momentum of lℏ per ℏω photon
energy [109]. The index p represents the radial mode index and
decides how the field amplitude gets distributed in the radial
direction.

6.2. Derivation of the two-photon wavefunction

The two photon wavefunction generated by SPDC process can
be written in the in LG basis as

|ψtp⟩=
∑
ls,ps

∑
li,pi

Cls,psli,pi
|ls,ps⟩s|li,pi⟩i, (100)

where |ls,ps⟩s represents the state of a signal photon in the
LG mode having orbital angular mode index ls and the radial
mode index ps. Using the momentum basis representation of
LG mode, that is, ⟨q|l,p⟩= LGl

p(q) [110] in equation (76), we

write Cls,psli,pi
as [111, 112]

Cls,psli,pi
= A
ˆ ˆ

d2qsd
2qiV(qs+ qi)

×Φ(qs,qi)
[
LGls

ps(qs)
]∗ [

LGli
pi(qi)

]∗
. (101)

Now using the polar coordinate in transverse momentum
space, that is qs = (qsx,qsy) = (ρscosϕs,ρssinϕs), qi =
(qix,qiy) = (ρicosϕi,ρisinϕi), dqs = ρsdρsdϕs and dqi =
ρidρidϕi we can write C

ls,ps
li,pi

as

Cls,psli,pi
=

ˆ ˆ ∞

0

ˆ ˆ π

−π

V(ρs,ρi,ϕs,ϕi)Φ(ρs,ρi,ϕs,ϕi)
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×
[
LGls

ps(ρs,ϕs)
]∗ [

LGli
pi(ρi,ϕi)

]∗
ρsρidρsdρidϕsdϕi.

(102)

6.3. Calculation of the angular Schmidt spectrum

The probability of detecting signal and idler photons with
OAM values lsℏ and liℏ respectively, can be represented as

Plsli =
∞∑
ps=0

∞∑
pi=0

|Cls,psli,pi
|2. (103)

Now using equation (102), we can get

Plsli =
∞∑
ps=0

∞∑
pi=0

ˆ ˆ ˆ ˆ ∞

0

ˆ ˆ ˆ ˆ π

−π

V(ρs,ρi,ϕs,ϕi)

×V∗(ρ′s,ρ
′
i ,ϕ

′
s,ϕ

′
i)Φ(ρs,ρi,ϕs,ϕi)Φ

∗(ρ′s,ρ
′
i ,ϕ

′
s,ϕ

′
i)

×
[
LGls

ps(ρs)
]∗ [

LGls
ps(ρ

′
s)
][
LGli

pi(ρi)
]∗ [

LGli
pi(ρ

′
i)
]

×eils(ϕ
′
s−ϕs)+ili(ϕ

′
i−ϕi)

×ρsρ′sρiρ′idρsdρ′sdρidρ′idϕsdϕ′sdϕidϕ′i , (104)

where we have used the relations LGls
ps(ρs,ϕs) =

LGls
ps(ρs) eilsϕs etc. Using the identity shown in [113],∑∞
p=0(LG)

l
p(ρ)(LG)

∗l
p (ρ

′) = 1
π δ(ρ

2 − ρ′2), in the above equa-
tion, we get

Plsli =
1

4π2

ˆ ˆ ∞

0

ˆ ˆ ˆ ˆ π

−π

V(ρs,ρi,ϕs,ϕi)V
∗(ρs,ρi,ϕ

′
s,ϕ

′
i)

×Φ(ρs,ρi,ϕs,ϕi)Φ
∗(ρs,ρi,ϕ

′
s,ϕ

′
i)e

ils(ϕ
′
s−ϕs)+ili(ϕ

′
i−ϕi)

×ρsρidρsdρidϕsdϕ′sdϕidϕ′i ,
(105)

which essentially can be represented as

Plsli =
1

4π2

ˆ ˆ ∞

0
ρsρi

∣∣∣∣∣
ˆ ˆ π

−π

V(ρs,ρi,ϕs,ϕi)

×Φ(ρs,ρi,ϕs,ϕi)e
−ilsϕs−iliϕidϕsdϕi

∣∣∣∣∣
2

dρsdρi. (106)

Considering the conservation of orbital angular momentum in
the SPDC process, we can show that ls =−li = l for Gaussian
pump beam [29]. In this situation, the corresponding probabil-
ity Pl−l is the angular Schmidt spectrum Sl, which can be writ-
ten as

Sl =
1

4π2

ˆ ˆ ∞

0
ρsρi

∣∣∣∣∣
ˆ ˆ π

−π

V(ρs,ρi,ϕs,ϕi)

×Φ(ρs,ρi,ϕs,ϕi)e
−il(ϕs−ϕi)dϕsdϕi

∣∣∣∣∣
2

dρsdρi. (107)

The width of this spectrum depends on θp and hence depends
on the rotation of the crystal. This width is characterized by
the angular Schmidt number Kα = 1/

∑
l S

2
l [114].

7. Conclusion

SPDC is the most widely used process for generating photon-
pairs entangled in various degrees of freedom such as position-
momentum, energy-time, polarization, and orbital angular
momentum. In SPDC, a pump photon interacts with a non-
linear optical crystal and splits into two entangled photons
called the signal and idler photons. The SPDC process has
been studied extensively in the past few decades for various
pump and crystal configurations, and the photon pairs pro-
duced by SPDC have been used in numerous experimental
studies on quantum entanglement and entanglement-based
real-world quantum-information applications. In this tutorial
article, we have presented a thorough study of phase matching
in BBO crystals and have thereby studied the entangled photon
generation by SPDC. We have discussed in details the effects
on phase-matching due to various crystal and pump paramet-
ers such as the length of the crystal, the angle between the
optic axis of the crystal and the pump propagation direction,
the pump incidence angle on the crystal surface, the refrac-
tion at the crystal surfaces, and the pump propagation direc-
tion inside the crystal. We have then presented theoretical and
experimental results illustrating how various phase matching
conditions affect the generation of photon pairs by SPDC. We
have also highlighted a few results that could be very useful
for experimental investigations with SPDC photons. Finally,
we have derived the two-photon wavefunction in the orbital
angular momentum basis and have calculated the two-photon
angular Schmidt spectrum.
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